TAKING ACCOUNT OF THE EFFECT OF TURBULENT
PULSATIONS ON THE THERMAL RADIATION OF A
MEDIUM IN A QUADRATIC APPROXIMATION
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An expression is obtained for the mean heat-radiation intensity of a plane layer, taking account
of turbulent pulsations,

In calculating the radiation of volumes filled with turbulent gas or plasma, it is usual to use a field of
thermodynamic parameters averaged over a sufficiently large time interval. However, the local temperature
and concentration values of the radiating components in turbulent flows pulsate irregularly about the mean
value. Because the emissivity depends nonlinearly on the temperature, the time-averaged radiation intensity
(as recorded on an instrument) may differ from the value of the radiation determined from the mean values
of the temperature and concentration fields,

The effect of turbulent pulsations on the thermal radiation was considered earlier in {1, 2]. In [3, 4],
this problem was discussed in connection with estimates of the accuracy of optical temperature-measurement
methods. In [1], a transfer equation was obtained for the case of optically thin pulsations defined by the rela-
tion nl €1 (n is the absorption coefficient, ! is the characteristic dimension of the large turbulent bodies).
The opposite limiting case wl »> 1 was considered essentially without paying attention to absorption pulsations.
For the intermediate case ®wl~ 1, some interpolation of the results obtained for »l >» 1 and I < 1 was pro-
posed. Absorption pulsations were taken into account in a linear approximation and pulsations of the Planck
function in a quadratic approximation with respect to the temperature pulsations,

In [2], this problem was solved using functional averaging. However, only the case of a combined nor-
mal distribution of the Planck-function and absorption-coefficient pulsations was considered in [2]; this is
valid for small fluctuation amplitudes, and is in fact true only for a linear dependence of the Planck function
and the absorption coefficient on the temperature fluctuations.

The effect of turbulent pulsations on the radiation would be expected to be at its greatest in the blue re-
gion of the spectrum, which is characterized by a stronger than quadratic dependence of the Planck function
on the temperature fluctuations. In [5], the effect of turbulent pulsations on the radiation transfer was con-
sidered in media with an arbitrary spatial distribution of the mean temperature and an exponential dependence
of the Planck function on the temperature pulsations. The dependence of the absorption coefficient on the
pulsating temperature component was assumed to be linear in [5].

In the present work, the case of a quadratic dependence of the absorption coefficient on the tempera-
ture pulsations is considered, allowing larger-amplitude absorption-coefficient pulsations than in the linear
approximation to be taken into account. Because of the mathematical difficulties involved, calculation is
restricted to the case of a statistically homogeneous layer,

The instantaneous value of the radiation intensity corresponding to a fixed temperature and concentra-
tion dependence along the line of sight is expressed as follows
i
I =1|ix)dx,
) 1)

where

L
i(x) = B (x) % (x)exp {— { % () dy}, 2)
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0 and L are the limits of the radiating object; B(x) is the Planck function; ®{x) is the absorption coefficient,
Because of the temperature and concentration pulsations in the direction of observation, the Planck function
and the absorption coefficient oscillate in a disorderly manner around their mean values. In view of the
ergodicity hypothesis, time averaging of the radiation in Eq. (1) may be replaced by averaging over the en-
semble of radiating objects, Below, all the means are understood to be means over the ensemble.

Consideration will be restricted to the blue spectral region, The dependence of the Planck function on
the temperature pulsations is then written in the form

B (x) = Boexp Bt (x), 3)

where B, is the Planck function for the mean temperature (T), constant along the layer, while
B=hvik(T); (4)
) =[TE—KTHVLKT ) (5)

T(x) is the instantaneous temperature at point x, The absorption coefficient depends on the temperature and
concentration. The dependence onthe temperature is usually the stronger. In the present work, the case in
which the pulsating component of the absorption coefficient depends solely on the temperature is considered
in the following manner:

% (x) = k[l + @l () + & ()] . (6)

where k is the absorption coefficient determined from the mean temperature; ¢ and ¢, are dimensionless
coefficients which do not depend on the spatial coordinate,

The result of averaging Eq. (1) depends on the form of the multidimensional temperature distribution
function t(x), However, there is at present practically no information on the distribution functions for the
pulsating parameters in turbulent media [1, 6]. Therefore, the simplest assumption regarding the distribu-
tion function t(x) will be made — specifically, that t(x) is a Gaussian random process with a mean value {tx) =
0.

Noting that the mean value of the integral in Eq. (1) is equal to the integral of the mean value of the
integrand in Eq. (2), consideration may pass to the calculation of the mean value of the functional in Eq. (2)
for a Gaussian process, taking into account that the temperature dependence of the Planck function and the
absorption coefficient is determined by Egs. (3) and (6):

d
Ci(x)> =B, (expift(x)] T

T %1, )
where
. L .
Tl () xl = exp{— [ k1 + ot (§) + @) dy |- ®)
In the case of a Gaussian process, according to [7], the mean value (i(x)) may be written in the form

CexpIBE(x)] fx— Gl D =
9

= Cexp (B [t(x)+o=5R(x, Do Hl >——<Tlt(y)+n(y) 51y

There 0°R (x, y)= (tx)t(y)) is a correlation function; 0® is the dispersion of the temperature pulsations; 8/0n(y)
is the functional-derivative operator; n(y) is a determined arbitrary function, which must be equal to zero in
the final expression, Averaging the transmission in Eq. (8), which is the exponential of a quadratic functional,
the following result is obtained [8]:
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f () = ko [y + 2051 (), 12)

Pm ) and Ay béing the eigenfunctions and eigenvalues of the integral equation

L
xmwm(w==.§R(y,z)mm(acu- (13)

The exgenvalues of the kernel, which is the correlation functlon are positive, Estimation of the spectral
radius [9] shows that the maximum eigenvalue

A< max \R(y, 2) dz. (14)
velx. L) ¢ .

In particular, for a correlation function of the form

Rma=w%—fjﬂ, 15)

where ! is the characteristic dimension of the pulsations, Eq. (14) gives

L<2l[l»—exp(-—- L_’i)]. 16)

2!
When the condition
2x0,0%h < 1 amn

is satisfied, the infinite products and sums in Eq. (10) may be transformed as follows:

- ) | § ; _ l nit (2600007 QN 4n
1+ 2kap0th,) 2 =exp{— — B In(l + 2ke0%A,)} = exp {— — B (— )" AEERT) gy (18)

”L]]( + 2x@;0%h ) exp( 5 ".2=1n( + 2xa50%hn)} = exp { 5 gl( ) ; mgl )
S = 3 e L (19

In the case of symmetric kernels, whatever the correlation functions, the sums over m may be written in the
form

« L
X =Ry, y)ay, 20)
m=] X

o LL
2 an n
mgl A AL :§§i(y) F2)R™ (y, 2) dyde, 21)

where R M is the iterated kernel.

Substituting Eqgs. (18)-(21) into Eq. (10), and retaining only the first two terms in the sums over n, the
mean transmission may be obtained, If the derivative of the transmission is then substituted into Eq. (9) and
subjected to the functional-shift operator, the following expression is obtained:

i) = (Br) [l —A@)exp{— (x> (L—x)+ D(x)}, (22)
where
1
(Br) = Bykexp (?- 42) (1 -+ mq + pg* = pl; 23
(> =x(l+p) o
L L [:
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It is readily evident that at small optical depths of one pulsation (ki « 1), A and D tend to zero linearly
in k! and Eq. (22) transforms to the result given in [1]. In this case, taking account of the turbulent tempera-
ture pulsations reduces to replacing the product of Planck functions by the absorption coefficient, and replac-
ing the absorption coefficient determined from the mean temperature by the mean value of the local emissivity
and the absorption coefficient, This replacement may lead to an increase by a few times in the radiation of a
statistically homogeneous layer. For example, when oy = oy =4, B = 5, ¢ = 0.2, the radiation is three times
larger when turbulent pulsations are taken into account than in a calculation from the mean temperature.

At small values of the parameter ki, the radiation of a homogeneous layer may be written as a series
in powers of ki, Because the resulting expressions are cumbersome, only the result for an infinite layer in
an approximation linear in ki will be given

(»B)
<) =w(1'—"lﬂ)’ (28)

He_4 +;_pq2+ mg(dp—m) +pq(2q+2m+pg+m(l+¢) 29)

Cl4p 1+ p( + mg+ pg+p)

Under the condition 4p > m?, which means that the instantaneous values of the absorption coefficient are non-
negative, H > 0. Therefore, taking into account that ki is finite reduces the radiation of the layer.

To estimate the effect of kI on the radiation of a layer of finite thickness for sufficiently large kl.
Eq. (22) was numerically integrated, taking account of Eqs. (23)-(26) with the correlation function in Eq. (15).
The results of the calculation show that taking account of A and D in Eq. (22) always reduces the radiation.
This reduction becomes significant when k! is sufficiently large and when the pulsation amplitude of the absorp-
tion coefficient and the Planck function becomes comparable with their mean values, i.e., at sufficiently large
values of o, @, and 8. The physical reason for this reduction is the negative correlation between the local
emissivity and the transmission. In Fig.1, as an example, the radiation of the layer as a function of its opti-
cal depth is shown for the parameter values oy =, = 4, 8 = 5, 0 = 0.2, ensuring sufficiently large fluctuations
of the Planck function and the absorption coefficient. The upper curves are obtained in the approximation of
optically thin pulsations [1] and the lower without taking account of the pulsations., It is evident from Fig,1
that calculations using Eq. (22) are little different from [1] right up to values ki ~ 0,5, When ki =1, the opti-
cally thin pulsation approximation gives a threefold increase in the radiation, whereas calculation from Eq. (22)
gives an approximately twofold increase.

Finally, an order-of-magnitude estimate will be made of the terms omitted from Eqs. (18) and (19), which
are of third order and higher in A;. The relative contribution of the omitted terms ~a® = (2kor,0%A)%, Using
Eq. (16) for A and noting that the region L — x ~ k™! makes the main contribution to the radiation of the layer,
it is found that for this region

a=4tcla202[l-—exp (»— 211 ” (30)
K
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Fig. 1. Radiation of turbulent
layer as a function of the opti-
cal thickness ki: - 1) disregard-
ing pulsations; 2) for optically
thin pulsations [1]; 3-5) calcu-
lation from Eq. (22) with kI =
0.3 (3), 0.5 (4), 1 (5).

a 4 kI

For oy =4, 0 =0.,2, kIl =1, the terms ignored in Egs, (18) and (19) give a relative contribution ~0.1, decreas-
ing with decrease in ki,
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